

D4.5 Guidelines and Instructions
for PLUGGY Apps

Deliverable number D4.5

Deliverable title Guidelines and Instructions for PLUGGY Apps

Nature1 R

Dissemination Level 2 PU

Author (email)
Institution

Luis Molina Tanco (lmtanco@uma.es) UMA

Peter Smatana (peter.smatana@tuke.sk) TUK

Daniel González Toledo (dgonzalezt@uma.es) UMA

Luna Herruzo Torrico (mlunaht@uma.es) UMA

Editor (email)
Institution

Luis Molina Tanco (lmtanco@uma.es) University of
Málaga.

Leading partner University of Málaga

Participating partners Technical Universisty Kosice

Official submission date: 30/11/2019

Actual submission date: 11/11/2019

1 R=Document, report; DEM=Demonstrator, pilot, prototype; DEC=website, patent fillings, videos, etc.; OTHER=other
2 PU=Public, CO=Confidential, only for members of the consortium (including the Commission Services), CI=Classified,

as referred to in Commission Decision 2001/844/EC

mailto:lmtanco@uma.es
mailto:peter.smatana@tuke.sk)
mailto:dgonzalezt@uma.es
mailto:mlunaht@uma.es
mailto:lmtanco@uma.es

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 3

Modifications index

08/11/2019 Initial Release

This work is a part of the PLUGGY project. PLUGGY has
received funding from the European Union’s Horizon 2020
research & innovation programme under grant agreement
no 726765. Content reflects only the authors’ view and
European Commission is not responsible for any use that
may be made of the information it contains.

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 4

TABLE OF CONTENTS

TABLE OF CONTENTS 4

EXECUTIVE SUMMARY 6

1 INTRODUCTION 7

1.1 Who is this document for? 7

1.2 What can I develop with PLUGGY? 7

1.3 Where can I find more resources? 8
1.3.1 Online resources 8
1.3.2 Relation with other PLUGGY Deliverables 8

2 THE PLUGGY API 10

2.1 The PLUGGY Architecture 10

2.2 The PLUGGY Datamodel 11
2.2.1 Content 12
2.2.2 Users and Social Interaction 14

2.3 Using the API Step by Step 15
2.3.1 Becoming a developer 15
2.3.2 Specifying Basic Information 17
2.3.3 Specifying your Application Type 17
2.3.1 Specifying Content Type and Reuse Policy. 19
2.3.2 Security 20
2.3.3 Making your Application Available to PLUGGY Users 21

3 EXAMPLE USE CASES OF THE PLUGGY API 22

3.1 Basics 22
3.1.1 Searching 22
3.1.2 Creating Content 24
3.1.3 Managing Notifications 25

3.2 Examples 26
3.2.1 asset-plugin-collage 27
3.2.2 exhibition-plugin-gallery-creator 27
3.2.3 exhibition-plugin-gallery-viewer 27
3.2.4 pluggy-example-browser 27
3.2.5 websocket 27

4 CONCLUSIONS 27

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 5

ANNEX: API DOCUMENTATION 28

Minimal Required Data Models 28

Endpoints and methods. 33

ANNEX: STYLE GUIDELINES FOR PLUGINS 75

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 6

EXECUTIVE SUMMARY

This document gives guidelines and instructions for future developers of the PLUGGY
pluggable applications and plugins. It condenses not only the development experience
gained by the PLUGGY consortium, but also that of the external developers who
participated in the App Challenge during the project and greatly contributed to the
improvement of the PLUGGY Application Programming Interface (API).

The PLUGGY architecture was devised to be modular and to provide an API for the future
development of applications, which will provide novel ways to experience and curate
cultural heritage content. The PLUGGY consortium provides developers with a set of
resources that allow the unassisted development of such applications, including:

 The Guidelines and Instructions for PLUGGY apps (this document).

 A set of source code examples at https://isense-
gitlab.iccs.gr/pluggy_public/pluggy-examples

 The online API documentation at https://pluggy.eu/api/doc/

This document provides an overview of the PLUGGY Architecture and Data Model.
Practical help comes in the form of code snippets which illustrate basic functionality of
the API –such as Search or Asset3 Creation–, and more advanced example use cases which
show how to create different plugins and applications. It also provides instructions on
how to become a PLUGGY developer and how to register applications to the PLUGGY
platform.

These resources should be sufficient to start unassisted development of pluggable
applications. However, PLUGGY is evolving and so will its API. The online documentation
may be more updated that this document, and developers who seek updated support can
reach the consortium at platform@pluggy-project.eu.

3 An Asset is the basic cultural content unit in PLUGGY. It is a container for a media file
such as, for example, an image or an audio file, together with some metadata which
describes what the file is about and how its owner licenses its use.

https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples
https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples
https://pluggy.eu/api/doc/
mailto:platform@pluggy-project.eu

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 7

1 Introduction

1.1 WHO IS THIS DOCUMENT FOR?

This document is for software developers outside the PLUGGY consortium who want to
contribute to the PLUGGY platform. It condenses not only the development experience
gained by the members PLUGGY consortium, but also that of the external developers who
participated in the App Challenge during the project, and greatly contributed to the
improvement of the PLUGGY REST API (the API, in the remaining of this document).

PLUGGY is a virtual place for sharing and bringing culture closer to everyone. If you are
not familiar with PLUGGY, there are two main entry points: the PLUGGY project webpage
at https://pluggy-project.eu/ and the PLUGGY Social Platform at https://pluggy.eu.

All registered users on the PLUGGY social platform can apply for a developer account. As
a developer, you can create enhanced and non-traditional experiences of content for all
users of PLUGGY. This document is your starting point to creating your application and
make it available via the PLUGGY social platform to a wide audience.

The remaining of this document introduces the API and gives example use cases to help
you get started:

 Section 2 THE PLUGGY API describes the PLUGGY architecture, datamodel, and
the step-by-step procedure to become a developer and start using the API.

 Section 3 EXAMPLE USE CASES gives further insight into the details of the API by
looking at typical examples you may need for your application, like searching,
creating content, or managing social interaction notifications.

There are two Appendices, meant as reference:

 API Documentation is the reference document for endpoints, methods and
models of the PLUGGY REST API.

 Style Guidelines for Plugins is directed to developers that want to use the
PLUGGY Social Platform design in their plugin applications. This includes a
recommended Colour Palette, a set of Icons, a Font and other basic visual
elements.

1.2 WHAT CAN I DEVELOP WITH PLUGGY?

As a developer, you can create two types of applications in PLUGGY:

 Plugins are integrated within the PLUGGY social platform.

 Applications: standalone desktop, mobile or web applications.

Both types of applications connect to the PLUGGY Back-end via the API to access and
create content according to the PLUGGY Data Model, which is explained later in this
document.

https://pluggy-project.eu/
https://pluggy.eu/

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 8

1.3 WHERE CAN I FIND MORE RESOURCES?

1.3.1 Online resources4

 As previously mentioned, this document assumes you are familiar with the
PLUGGY project. If not, visit https://pluggy-project.eu.

 To register as a PLUGGY user and a PLUGGY developer, visit the PLUGGY Social
Platform at https://pluggy.eu.

 If you want to jump directly into development please visit this page for more
information about the API: https://pluggy.eu/api.

 The API specification can be found at https://pluggy.eu/api/doc/.

 The source code of the examples presented later in this document can be found
at: https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples.

 The PLUGGY Developers Videos offer a visual overview of how to become a
PLUGGY developer: https://vimeo.com/showcase/5872393

 Complex applications and plugins were developed during the PLUGGY project,
which can serve as inspiration for your development. Part or all of their source
code is open can be found at

o Gaming Application: https://github.com/xteamsoftware/PLUGGY
o 3D Sonic Application: https://github.com/lpicinali/PlugSonic-soundscape
o Geolocation Application: https://isense-

gitlab.iccs.gr/george.chatzigeorgakidis/pluggy-pins.
o Augmented Reality Application: https://isense-

gitlab.iccs.gr/dgonzalezt/pluggy-ar-app

 The source code of the PLUGGY social platform, the main front-end to the API, is
also open, and can be found at https://isense-gitlab.iccs.gr/PLUGGY/pluggy-web.

 The source code of the back-end is also open, and can be found at
https://isense-gitlab.iccs.gr/PLUGGY/pluggy-core.

 If you find a problem with the API or you have a suggestion please consider
creating an issue at https://isense-gitlab.iccs.gr/PLUGGY/pluggy-core/issues

1.3.2 Relation with other PLUGGY Deliverables

The PLUGGY project has generated a series of documents which can help you gain insight
into the whole PLUGGY project, creating applications which are in line with the project’s
vision of cultural heritage.

 D3.2 and D3.3 specify the main front-end to the PLUGGY API, composed by two
sub-systems: the Social Platform and the Curatorial Tool. Both constitute the
front-end of a single website and thus the frontiers between them are blurred.
D3.2 describes the Social Platform, and D3.3 describes the Curatorial Tool.
Curation of content lies outside the scope of this deliverable, but D3.3 is fully
dedicated to it.

4 All links are correct at the writing of this document, but please bear in mind that they
might vary in the future.

https://pluggy-project.eu/
https://pluggy.eu/
https://pluggy.eu/api
https://pluggy.eu/api/doc/
https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples
https://vimeo.com/showcase/5872393
https://github.com/xteamsoftware/PLUGGY
https://github.com/lpicinali/PlugSonic-soundscape
https://isense-gitlab.iccs.gr/george.chatzigeorgakidis/pluggy-pins
https://isense-gitlab.iccs.gr/george.chatzigeorgakidis/pluggy-pins
https://isense-gitlab.iccs.gr/dgonzalezt/pluggy-ar-app
https://isense-gitlab.iccs.gr/dgonzalezt/pluggy-ar-app
https://isense-gitlab.iccs.gr/PLUGGY/pluggy-web
https://isense-gitlab.iccs.gr/PLUGGY/pluggy-core
https://isense-gitlab.iccs.gr/PLUGGY/pluggy-core/issues

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 9

 D4.1, D4.2, D4.3 and D4.4 describe the PLUGGY Apps, which also create and
access the digital content created and reused in the PLUGGY Website. The apps
have been extended to become, in some cases, full creation & experience
toolchains, implementing part of the PLUGGY website front-end, so after the
Social Platform and the Curatorial Tool, they are the most complex examples of
use of the API at the writing of this document.

 D3.1 “Architecture Specification” establishes the System Architecture, which
includes the organisation in logical components of the system developed in
PLUGGY. It contains specifications for the main modules of the system, including
the Social Platform and the Curatorial Tool.

 D3.4 “Content Management System” is a brief overview of the back-end which
provides the serviced implemented in the API.

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 10

2 The PLUGGY API

2.1 The PLUGGY Architecture

Figure 1. The PLUGGY Architecture

Figure 1 shows the PLUGGY back-end provides a REST API to access all functionality for
the different front-ends and applications (green boxes in the figure): the Social Platform,
the Curatorial Tools, the applications developed within the PLUGGY Project and the 3rd
party applications that you might be planning to develop.

The common back-end allows to create content with one application which can be later
experienced by the other applications and front-ends. The Web Application Platform is
modular and provides common functionality to the Social Platform, Curatorial Tools and

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 11

the Application Developer Tool, such as logging and security. This common functionality
is also provided to 3rd party plugins (not shown in the figure), which you can also develop.

The back-end is actually composed of two modules (red boxes in the figure), the Core
PLUGGY Components, which are the Content Management Services and the Content
Repository.

The PLUGGY Content Management Services contain all the software components needed
to process, store and serve information to external users via the REST API. The
components are:

● External Repository Content Connectors: providing a unified interface to external

libraries, including Europeana5.

● Hinting/Suggestions and Recommendation Services

● Search Services, including basic (all fields text search) and advanced content

search which can be filtered by several attributes such as geolocation, metadata,

etc.

● Authorization, Authentication and Intellectual Property Services

● Social Platform Services: services used for social interaction between users and

users’ content

● Notification Services: user notification when new content is created, based on

user preferences

● Content Services: full CRUD operation for PLUGGY content

All these components access the PLUGGY Content Repositories which store all the
information, according to a data model which is described in the next Section.

Finally, the yellow boxes in Figure 1 represent the two basic extensibility points of the
PLUGGY platform:

 The Pluggable Application Interface: allows users to explore and create content
of different types from the ones supported by the Core PLUGGY applications and
front-ends.

 External Repository Content Connectors: allow users to reuse content from
existing external content repositories.

2.2 THE PLUGGY DATAMODEL

There is a data model that you need to understand as a developer to fully exploit the
PLUGGY API. This section gives an overview of the main entities in the Data Model. For

5 As this document is writing, more libraries are being integrated such as Wikipedia and
the British Museum Library.

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 12

more information explore Figure 2, and the rest of this document, especially: Annex: API
Documentation.

Figure 2. Overview of PLUGGY Data Model.

2.2.1 Content

Content is central in PLUGGY. Thus the main, basic concepts in the PLUGGY Data Model
are the content entities Asset and Exhibition.

Asset (https://beta.pluggy.eu/api/doc/#/Asset_CRUD): is the elementary unit of content
in PLUGGY. An Asset is a media file6 with an identified owner, a title, a description, a set
of tags and a license, which specfies how this file can be reused. The Asset can be used as
a digital representation of cultural heritage artifact, tangible or intangible. The media file
can be text, image audio, 3d model or any type of binary data.

The PLUGGY API provides basic CRUD methods to manipulate Assets, plus some advanced
functionality for social interaction, importing from external sources, etc.

6 Or set of files, in special cases such as 3D Model Assets, which necessarily span more
than one file (mesh, material and texture files).

https://beta.pluggy.eu/api/doc/#/Asset_CRUD

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 13

Figure 3. An Image Asset in PLUGGY.

Exhibition (https://beta.pluggy.eu/api/doc/#/Exhibition_CRUD): cultural heritage stories
curated by users of PLUGGY using one or more Assets. PLUGGY provides you with a set
of curatorial tools for creation of exhibitions of several types: Media Stories, Timelines,
Geolocated Tours, Augmented Reality Exhibitions and Games. You are welcome to create
your own curatorial tool or viewer to engage users in ways not imagined by the PLUGGY
project.

As with Asssets, the PLUGGY platform provides basic CRUD methods for manipulation
with the Exhibitions and some advanced functionality for social interaction, following and
notification functionalities.

Exhibition Point (https://beta.pluggy.eu/api/doc/#/Exhibition_Point_CRUD). Exhibition
Points link Exhibitions and Assets. An Exhibition Point is the usage of an Asset in an
Exhibition, and an Exhibition is composed of one or several Exhibition Points. For example,
Events are the Exhibition Points of Timelines, and Chapters are the Exhibition Points of
Media Stories. Equally to Assets and Exhibitions, the PLUGGY provides basic CRUD
methods for manipulation of Exhibition Points.

Folders (https://beta.pluggy.eu/api/doc/#/User_Folders): Users can organise their own
content or content they have found in Pluggy using Folders. Folders are always private
and serve both as folders per se and as bookmarks.

https://beta.pluggy.eu/api/doc/#/Exhibition_CRUD
https://beta.pluggy.eu/api/doc/#/Exhibition_Point_CRUD
https://beta.pluggy.eu/api/doc/#/User_Folders

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 14

Figure 4. Folders, as shown privately to a user of the Social Platform in the "My Space"
section.

2.2.2 Users and Social Interaction

Users and Teams (https://beta.pluggy.eu/api/doc/#/User_CRUD): Users of Pluggy own
Assets and Exhibitions. There are three types of Users: Individual Users, Team Users and
Applications. A Team (https://beta.pluggy.eu/api/doc/#/Team_CRUD) owns Assets and
Exhibitions in the same way a normal user does. Within a Team, a user can have the role
of Member or the role of Admin. (See Section 2.3 for Applications).

Social Interaction: Users can interact socially with other users by a one-way following
system. (https://beta.pluggy.eu/api/doc/#/User_Social). Users can also interact socially
with content, in terms of Assets and Exhibitions, which can be liked, commented or
reported by other users. (https://beta.pluggy.eu/api/doc/#/Asset_Social),
(https://beta.pluggy.eu/api/doc/#/Exhibition_Social).

Notifications (https://beta.pluggy.eu/api/doc/#/User_Notifications) are sent in real time
via WebSockets (see Section 3.1.3) and linked to Users. If you are a user, the back-end
creates notifications for you when a user followed by you creates new content, a User
likes your content, or a Users starts following you.

https://beta.pluggy.eu/api/doc/#/User_CRUD
https://beta.pluggy.eu/api/doc/#/Team_CRUD
https://beta.pluggy.eu/api/doc/#/User_Social
https://beta.pluggy.eu/api/doc/#/Asset_Social
https://beta.pluggy.eu/api/doc/#/Exhibition_Social
https://beta.pluggy.eu/api/doc/#/User_Notifications

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 15

Figure 5. A Timeline Exhibition in PLUGGY

2.3 USING THE API STEP BY STEP

The following sections explain the first steps to become a developer of the PLUGGY
applications, giving an overview of what is involved in creating applications and making
them available to the PLUGGY users7.

2.3.1 Becoming a developer

Start by registering yourself to the PLUGGY platform (http://pluggy.eu > Register). Click
on your profile picture and then My Profile. In the Edit Section of your profile, choose
Advanced Settings. This will let you apply for a developers’ account (see Figure 6). Your
request will be automatically accepted, but to apply changes you have to log out from the
PLUGGY platform and log back in.

7 For further step-by-step instructions for each type of application, whatch the videos at
https://vimeo.com/showcase/5872393.

http://pluggy.eu/
https://vimeo.com/showcase/5872393

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 16

Figure 6. Applying for a developer's account.

This will give you access to the list of the Applications which you own, or owned to a Team
to which you belong (Figure 7). The next Section describes how to register your
application and connect it to the PLUGGY Platform.

Figure 7. List of your Applications.

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 17

As a developer, you can create two types of applications:

 Plugins are integrated within the PLUGGY Social Platform front-end.

 Applications are stand-alone. They can be Desktop, Mobile or Web Applications,
and they integrate with the PLUGGY back-end.

To create a Plugin or an Application, press the Create New Application.

2.3.2 Specifying Basic Information

To create a Plugin or an Application, press the Create New Application button (Figure 7)
in your developer zone and provide the Basic Info required.

Figure 8. Step 1 - basic info of your application.

2.3.3 Specifying your Application Type

The next screen will let you specify the type of application that you are registering.

A basic principle of PLUGGY plugins is that an externally hosted web application accessible
via https can be displayed within the PLUGGY platform (see)

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 18

Figure 9. External plugin accessible via PLUGGY

If your application supports Plugin Mode, you can specify a Plugin Slug, a readable URL
for your application. Then, for each type of application ou can specify a number of URLs
which will allow you to seamlessly plug your application in PLUGGY :

 Web Application: You have to specify the URL of your Web Application.

 Mobile Application: You have to specify the URL of Google Play Store and/or
Apple iTunes installation links.

 Desktop Application: You have to specify an installation URL.

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 19

Figure 10. Step 2 - Specifying the type of application and associated plug URLs. Figure
shows the case of a mobile application.

2.3.1 Specifying Content Type and Reuse Policy.

The next screen allows you to specify exactly what your application does with content.

First you have to specify information regarding intellectual property. This will affect what
assets you will get back by default when your application does searches on the back-end.
Here, you have to specify if your application will:

 use content for commercially,

 be able to provide attribution for reused content, and

 creates derivative work (i.e. modifies) or not the reused content.

For example, if you mark that your application uses content for commercial use, a default
Asset search by your app will give back only Assets in the Public Domain, CC-BY or CC-BY-
SA. It will not give back any of the non-commercial reuse Assets.

In the same screen, you have to specify the following attributes of the type of Content
your Application will manage:

 Supported Content, which can be Exhibitions, Assets or Unspecific. Depending
on this, you will have to specify which type of Exhibition or Asset you support.

 Supported actions on content, which can be View, Creation and/or Edit.

For each supported action, you will have to provide a URL which specifies how you will
get the content ID passed on to your Application. Figure 11 shows an example of an
Application that supports viewing of Timelines.

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 20

Figure 11. Step 3 - An example of an application that supports viewing of Timeline
exhibitions.

2.3.2 Security

PLUGGY is adopting the OAuth28 scheme for secure access to users’ credentials. Users
can enter credentials only via trusted PLUGGY’s authentication interface and every
application which want to access user’s content has to be approved.

In this screen you must choose Supports OAuth2, and Authorization Code. You can then
specify a client ID and a redirect Uri.

Finally, in the last step you can specify other Pluggy Users that will also be developers of
your application, your development team.

This is all you need to register your application.

All this information will arrive to the PLUGGY administrators. The following section
illustrates the different statuses that your application will go through before it is declared
a trusted application.-

8 https://tools.ietf.org/html/rfc6749. PLUGGY will be compatible with other platforms that
support OAuth2 such as Google and Facebook. Users will be able to use their existing
credentials for access to the PLUGGY platform.

https://tools.ietf.org/html/rfc6749

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 21

Figure 12 Step 5 - OAuth2 settings

2.3.3 Making your Application Available to PLUGGY Users

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 22

While the application is in development or ready for production, it will only be available
to you and to the development team that Once you have developed your application, you
can declare your application ready for production. For this, click on your Application in
the Application Console (click on the line for your app):

This will take you to a summary page showing all the information about your application.
Click on the Production Ready button under Application Status:

This will advance your application status to the next stage.

The Pluggy Administrators will inspect your app and make it available for all users, or
contact you if there are remaining issues to be solved.

3 Example Use Cases of the PLUGGY API

3.1 BASICS

Your application will be the client of PLUGGY REST API. All the API endpoints can be found
at

https://pluggy.eu/api/v1/.

Even if future versions of the API are developed (e.g v2) this API will remain accessible. All
the GET methods can be unauthenticated, but the POST, PUT and DELETE methods will
require authenticated access.

3.1.1 Searching

GET methods avaliable via main endpoint for search, which is /search. Additional
endpoints are /assets, /exhibitions, /users, /teams and /applications. Some
examples follow (see https://pluggy.eu/api/doc for the full specification).

https://pluggy.eu/api/v1/
https://pluggy.eu/api/doc

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 23

Assets.

Results are paginated. By default, 10 items will be returned. Use &page=1&limit=10 to get
the next page. Use &sort=trending, &sort=recent or &sort=title to get them in
different orders.

/search?kind=ContentAsset
/search?kind=ContentAsset&sort=recent

If you just want all Assets you can just use:

/assets

The /assets/{assetId} endpoint allows you to get all the media and metadata in a given
Asset

/assets/5dbace4242b0df9c2b1bae0e
/assets/5dbace4242b0df9c2b1bae0e/media/5dbace4242b0df9c2b1bae1b

Exhibitions.

Results are returned in the same fashion as Assets.

/search?kind=ContentExhibition
/search?kind=ContentExhibition&sort=recent

The endpoint can also return all exhibitions in which an Asset is used, given the Asset id, or all
exhibitions win which an Asset is used, given the Exhibition id:

/search?exhibitionsForAsset=5c120d03fffb9430d682c277
/search?relatedExhibitions=5c120d03fffb9430d682c27f

If you just want all exhibitions you can use:

/exhibitions

The /exhibitions/{exhibitionId} endpoint allows you to get all the media and

metadata in a given exhibition. See the Annex: API Documentation for further details.

Users & Teams:

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 24

Users can be searched by user id. All content created by a user can be retrieved by:

/search?user=5af19572ed0683578c1a6111

Users and Teams can also be searched by name using the general search q= and
&kind=UserPerson or &kind=UserTeam.

/search?q=Joe&kind=UserPerson

Searches in External Libraries:

Searches in third party libraries are specified through &repository=europeana,
&repository=wikipedia, etc. Results will not be paginated, so you need to use &page and
&limit if you want to paginate them.

/search?q=mummy&page=0&limit=10&sort=trending&repository=europeana

3.1.2 Creating Content

PUT, POST and DELETE methods are available for authenticated users to create content
at all levels, from media and metadata for Assets, to Exhibition Point content and
metadata for Exhibitions.

The main endpoints to manage content in PLUGGY are /assets, /exhibitions, and
/exhibitions/{exhibitionId}/exhibition-points. An example on how to create an
Image Asset follows (see https://pluggy.eu/api/doc for the full specification).

Creating an Image Asset

A POST on the assets endpoint creates an asset. The best practice for PLUGGY is that one asset
will contain one media file. A cover image can be added for every asset (not needed for Image
Assets).

Thus the steps for creating an Image Asset would be:

1. Create asset with POST: /assets

A series of optional metadata for the image Asset can be provided as payload:

https://pluggy.eu/api/doc

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 25

 {
 "location": {
 "geo": {
 "type": "Point",
 "coordinates": [36.76173250997905, -3.84477261453867],
 "zoom": 14
 }
 },
 "legal": {
 "licenseId": "",
 "license": "CC-BY",
 "isOwnWork": true,
 "source": "Pluggy",
 "author": "5c13924ca21c67804286af00",
 "authorKind": "UserPerson"
 },
 "public": true,
 "tags": ["Nerja","Nature","Cave","Málaga"],
 "mediaContent": [],
 "title": "Cueva de Nerja",
 "description": "Beautiful Natural cave in Nerja, Spain",
 "previewMedia": null,
 "coverImage": "",
 "creator": null,
 "type": "image"
}

2. Upload media content with POST: /assets/{assetId}/media

When uploading media use “multipart/form-data”. The name of the file input box
should be “file”.

3.1.3 Managing Notifications

Notifications are created per user automatically. For example, when any of the users
followed by a given one creates new content. The back-end creates and stores this
notifications, which can be retrieved in two ways: directly by the REST API or in real time,
by connecting to a web socket.

Getting notifications by API

Getting the notifications can be done using the /users/my endpoint or the user id, but both
require the user to be authenticated to the platform:

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 26

GET: /users/my/notifications
GET: /users/:userId/notifications

This will receive the 10 most recent notifications of the user:

{
 message: String,
 creator: GenericUser, // who created the notification
 owner: GenericUser, // receiver of the notification
 type: String, // ["warning", "info", "like", "follow", “unfollow”,
 // "comment", "contentUse",
 // "contentPublished","report"],
 referenceToContent: ContentGeneric, // content if it exists
 referenceToEvent: Event, // reference to event if exists
 internalLink: String, // where the user will be redirected
 isRead: Boolean,
}

A client can mark notifications as read or unread:

PUT: /users/:userId/notifications/:notificationId/unread
PUT: /users/:userId/notifications/:notificationId/read
PUT: /users/:userId/notifications/allread

A client can receive notifications in real time. Please refer to https://isense-
gitlab.iccs.gr/pluggy_public/pluggy-examples/blob/master/websocket/ for an example
of how to connect to the API to listen websocket messages.

3.2 EXAMPLES

The repository https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples contains a
series of simple examples using html, javascript, and the React framework in the more
advanced examples. The examples can be used as an inspiration or guide for the
integration with the PLUGGY Platform. All the examples have installation instructions and
description in their root folder.

https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples/blob/master/websocket/
https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples/blob/master/websocket/
https://isense-gitlab.iccs.gr/pluggy_public/pluggy-examples

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 27

3.2.1 asset-plugin-collage

This is a web plugin that creates a Image Asset in the form of a collage created from 5
selected Image Assets. The example uses the React framework9.

3.2.2 exhibition-plugin-gallery-creator

This is also a web plugin that creates a new virtual exhibition from 8 selected assets, which
can be selected from a very simple image asset browser. This exhibition can be viewed by
the next plugin. Uses the React framework.

3.2.3 exhibition-plugin-gallery-viewer

Web plugin that allows users to view virtual exhibitions created by the previous example,
the exhibition-plugin-gallery-creator. Uses THREE.js10.

3.2.4 pluggy-example-browser

Simple mobile application for browsing and "liking" the content of The PLUGGY Platform.

3.2.5 websocket

Simple example how to use websocket withing The PLUGGY Platform.

4 Conclusions

The modular architecture of PLUGGY and its API were designed to facilitate the
development of innovative ways to create and experience cultural heritage.

This document provides guidelines and instructions for the development of applications
connected to the PLUGGY platform. They are intended for software developers who want
to extend PLUGGY in ways not yet imagined by the PLUGGY consortium. We have tried to
facilitate the learning process of developers by introducing the functionality of the API,
the steps to be a PLUGGY developer, the basics on how to create plugins and applications,
and a set of example use cases which illustrate the potential of the platform and
encourage developers to create their own applications.

PLUGGY is a live project and this document may become obsolete. The introductory
section gives a comprehensive list of online resources for updated reference information.

9 https://reactjs.org/
10 https://threejs.org/

https://reactjs.org/
https://threejs.org/

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 28

Annex: API Documentation

PLUGGY is evolving and so will its API. The online documentation at

https://pluggy.eu/api/doc/

may be more updated that this document, and developers who seek updated support can
reach the consortium at platform@pluggy-project.eu.

License: License - MIT

MINIMAL REQUIRED DATA MODELS

This section clarifies the optional and required attributes for the main data models of the
API.

Asset

{
 title: { //required: minimum length, 1 character
 type: String
 },
 description: { //required: can be empty string
 type: String
 },
 transcription: { // optional
 type: String
 },
 public: { // not used, always public
 type: Boolean,
 default: false,
 },
 creator: { //required - automatically generated by back-end
 type: Schema.Types.ObjectId,
 ref: 'UserGeneric'
 },
 owner: { //required - automatically generated by back-end
 type: Schema.Types.ObjectId,
 ref: 'UserGeneric'
 },
 tags: [{ // required, minimum one tag
 type: String
 }],
 mediaContent: [// optional
 {type: Schema.Types.Object, ref: 'GFS' }
],
 coverImage: {// optional
 type: Schema.Types.Object, ref: 'GFS'
 },
 language: {// not used
 type: String
 },
 permalink: {// backend managed
 type: String
 },

https://pluggy.eu/api/doc/
mailto:platform@pluggy-project.eu
https://opensource.org/licenses/MIT

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 29

 metadata: { // required if coverImage is used for coverLegal (same as legal)
 type: Schema.Types.Mixed,
 },
 social: { type: SocialInteraction, default: () => ({}) }, // required -
automatically generated by backend
 location: { type: GeoLocation, default: () => ({}) },
 updatedAt:{ // automatically generated by backend
 type: Date,
 default: Date.now
 },
 createdAt:{ // automatically generated by backend
 type: Date,
 default: Date.now
 },
 legal: { // required
 license: { // required
 type: String
 },
 isOwnWork: { // required
 type: Boolean,
 default: false,
 },
 source: { // required
 type: String
 },
 author: { // required
 type: String
 },
 authorKind: { // required
 type: String,
 enum: ["UserTeam", "UserPerson", "External"],
 }
 },
 type: { // required
 type: String,
 enum: ["audio", "video", "text", "3Dmodel", "image", "mixed"],
 allowNull: true,
 },
 origin: { // not used, replaced by owner - i.e. team europeana
 type: String,
 enum: ['pluggy.eu', 'europeana.eu', 'wikipedia.org'],
 allowNull: true,
 },
}

Exhibition

{
 title: { //required: can be empty string
 type: String
 },
 description: { //required: can be empty string
 type: String
 },
 transcription: { // not used
 type: String

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 30

 },
 public: { //required
 type: Boolean,
 default: false,
 },
 creator: { //required - automatically generated by back-end
 type: Schema.Types.ObjectId,
 ref: 'UserGeneric'
 },
 owner: { //required - automatically generated by back-end
 type: Schema.Types.ObjectId,
 ref: 'UserGeneric'
 },
 tags: [{ // required: can be empty
 type: String
 }],
 mediaContent: [
 {type: Schema.Types.Object, ref: 'GFS' }
],
 coverImage: {
 type: Schema.Types.Object, ref: 'GFS'
 },
 language: { // not used
 type: String
 },
 permalink: { // not used
 type: String
 },
 metadata: { // should be array [{coverLegal: {//same as legal...}}, ...]
 type: Schema.Types.Mixed,
 },
 social: { type: SocialInteraction, default: () => ({}) }, // required -
automatically generated by backend
 location: { type: GeoLocation, default: () => ({}) },
 updatedAt:{ // automatically generated by backend
 type: Date,
 default: Date.now
 },
 createdAt:{ // automatically generated by backend
 type: Date,
 default: Date.now
 },
 legal: { // required, as for Asset
 license: {
 type: String
 },
 isOwnWork: {
 type: Boolean,
 default: false,
 },
 source: {
 type: String
 },
 author: {
 type: String
 },
 authorKind: {
 type: String,
 enum: ["UserTeam", "UserPerson", "External"],
 }
 },

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 31

 type: { //required
 type: String,
 // enum: ["tour", "ar", "sound", "game", "media", "timeline", "example"],
 allowNull: true,
 },
 exhibitionPoints: [{ // optional
 type: Schema.Types.ObjectId,
 ref: 'ContentExhibitionPoint'
 }],
 exhibitions: [{ // optional
 type: Schema.Types.ObjectId,
 ref: 'ContentExhibition'
 }],
 arrangements: [{ // optional
 type: {type: String},
 arrangement: Schema.Types.Mixed
 }],
}

Exhibition Point

{
 title: { //required: can be empty string
 type: String
 },
 description: { // optional
 type: String
 },
 transcription: { // not used
 type: String
 },
 public: { // not used type: Boolean,
 default: false,
 },
 creator: { //required - automatically generated by back-end
 type: Schema.Types.ObjectId,
 ref: 'UserGeneric'
 },
 owner: { //required - automatically generated by back-end
 type: Schema.Types.ObjectId,
 ref: 'UserGeneric'
 },
 tags: [{ // not used
 type: String
 }],
 mediaContent: [// not used
 {type: Schema.Types.Object, ref: 'GFS' }
],
 coverImage: { // not used
 type: Schema.Types.Object, ref: 'GFS'
 },
 language: { // not used
 type: String
 },
 permalink: { // managed by backend

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 32

 type: String
 },
 metadata: { // optional
 type: Schema.Types.Mixed,
 },
// not used for exhibition points
 social: { type: SocialInteraction, default: () => ({}) }, // required -
automatically generated by backend
 location: { type: GeoLocation, default: () => ({}) },
 updatedAt:{ // automatically generated by backend
 type: Date,
 default: Date.now
 },
 createdAt:{ // automatically generated by backend
 type: Date,
 default: Date.now
 },
 legal: { // not used on Exhibition Points – will be removed
 license: {
 type: String
 },
 isOwnWork: {
 type: Boolean,
 default: false,
 },
 source: {
 type: String
 },
 author: {
 type: String
 },
 authorKind: {
 type: String,
 enum: ["UserTeam", "UserPerson", "External"],
 }
 },
 assets: [{ //optional
 type: Schema.Types.ObjectId,
 ref: 'ContentAsset'
 }],
 content: { // optional
 contentType: { // required in case of filled in content
 type: String,
 enum: ["html", "markdown", "json", "xml"]
 },
 content:{ // required in case of filled in content
 type: Schema.Types.Object, ref: 'GFS'
 }
 },
}

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 33

ENDPOINTS AND METHODS.

This section enumerates all methods available for each of the API endpoints.

Current version of the API: v1

URL prefix: https://pluggy.eu/api/v1/

/applications

GET
Summary:

customizable method for retrieving applications from the system

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 applications to be returned

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create new application

Responses

Code Description

200 created application

Security

Security Schema Scopes

OAuth2 read write

/applications/{applicationId}

GET
Summary:

get application by Id

Parameters

Name Located in Description Required Schema

https://pluggy.eu/api/v1/

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 34

 No applicationIdParam

Responses

Code Description

200 application to be returned

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update application

Parameters

Name Located in Description Required Schema

 No applicationIdParam

Responses

Code Description

200 updated application

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete application

Parameters

Name Located in Description Required Schema

 No applicationIdParam

Responses

Code Description

200 information about success or fail of the call

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 35

/application/{applicationId}/status

PUT
Summary:

change development status of the application

Responses

Code Description

200 status updated

Security

Security Schema Scopes

OAuth2 read write

/application/{applicationId}/users

PUT
Summary:

update list of application members

Responses

Code Description

200 application developer team updated

Security

Security Schema Scopes

OAuth2 read write

/application/{applicationId}/users/{userId}/role

PUT
Summary:

WARNING - Not implemented yet! Change role of user in developer team.

Responses

Code Description

501

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 36

/assets

GET
Summary:

customizable method for retrieving assets from the system

Parameters

Name Located in Description Required Schema

 No assetTypeParam

 No qParam

 No tagsParam

 No lngParam

 No latParam

 No repositoryParam

 No pageParam

 No limitParam

 No sortParam

Responses

Code Description

200 assets to be returned

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create new asset

Responses

Code Description

200 created asset

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 37

/assets/import

POST
Summary:

import asset from external library

Responses

Code Description

200 created asset

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}

GET
Summary:

get asset by Id

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 asset to be returned

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 updated asset

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 38

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 information about success or fail of the call

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/cover

GET
Summary:

get cover image of the asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 returned media file

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create cover image for the asset

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 39

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 success of the operation

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/media

POST
Summary:

create new media for the asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/media/{mediaId}

GET
Summary:

get media of the asset by Id

Parameters

Name Located in Description Required Schema

 No assetIdParam

 No mediaIdParam

Responses

Code Description

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 40

200 returned media file

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete media of the asset by Id

Parameters

Name Located in Description Required Schema

 No assetIdParam

 No mediaIdParam

Responses

Code Description

200 succes or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/media/{mediaId}/thumbnail

GET
Summary:

get thumbnail of the media of the asset by Id

Parameters

Name Located in Description Required Schema

 No assetIdParam

 No mediaIdParam

Responses

Code Description

200 returned thumbnail of the image media file

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 41

/assets/{assetId}/media/{mediaId}/original

GET
Summary:

get original sized image media file

Parameters

Name Located in Description Required Schema

 No assetIdParam

 No mediaIdParam

Responses

Code Description

200 returned original media file

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/media/{mediaId}/facebook

GET
Summary:

get optimized size of image media file for the facebook

Parameters

Name Located in Description Required Schema

 No assetIdParam

 No mediaIdParam

Responses

Code Description

200 returned resized media file

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 42

/assets/my

GET
Summary:

customizable method for retrieving assets of logged in user from the system

Parameters

Name Located in Description Required Schema

 No qParam

 No tagsParam

 No lngParam

 No latParam

 No repositoryParam

 No pageParam

 No limitParam

 No sortParam

Responses

Code Description

200 assets to be returned

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/like

POST
Summary:

update asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 success or fail of the operation

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 43

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/unlike

POST
Summary:

unlike asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/assets/{assetId}/comment

POST
Summary:

comment on asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 44

/assets/{assetId}/report

POST
Summary:

report asset

Parameters

Name Located in Description Required Schema

 No assetIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions

GET
Summary:

customizable method for retrieving exhibitions from the system

Parameters

Name Located in Description Required Schema

 No exhibitionTypeParam

 No qParam

 No tagsParam

 No lngParam

 No latParam

 No repositoryParam

 No pageParam

 No limitParam

 No sortParam

Responses

Code Description

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 45

200 exhibitions to be returned

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create new exhibition

Responses

Code Description

200 created exhibition

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}

GET
Summary:

get exhibition by Id

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 exhibition to be returned

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 46

Responses

Code Description

200 updated exhibition

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 information about success or fail of the call

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/cover

GET
Summary:

get cover image of the exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 returned media file

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 47

POST
Summary:

create cover image for the exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 success of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/media

POST
Summary:

create new media for the exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/media/{mediaId}

GET
Summary:

get media of the exhibition by Id

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 48

 No mediaIdParam

Responses

Code Description

200 returned media file

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete media of the exhibition by Id

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No mediaIdParam

Responses

Code Description

200 succes or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/media/{mediaId}/thumbnail

GET
Summary:

get thumbnail of the media of the exhibition by Id

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No mediaIdParam

Responses

Code Description

200 returned thumbnail of the media file

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 49

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/media/{mediaId}/original

GET
Summary:

get original sized image media file

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No mediaIdParam

Responses

Code Description

200 returned original media file

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/media/{mediaId}/facebook

GET
Summary:

get optimized size of image media file for the facebook

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No mediaIdParam

Responses

Code Description

200 returned resized media file

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 50

/exhibitions/my

GET
Summary:

customizable method for retrieving exhibitions of logged in user from the system

Parameters

Name Located in Description Required Schema

 No exhibitionTypeParam

 No qParam

 No tagsParam

 No lngParam

 No latParam

 No repositoryParam

 No pageParam

 No limitParam

 No sortParam

Responses

Code Description

200 exhibitions to be returned

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/like

POST
Summary:

update exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 51

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/unlike

POST
Summary:

unlike exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/comment

POST
Summary:

comment on exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 52

/exhibitions/{exhibitionId}/report

POST
Summary:

report exhibition

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-points

GET
Summary:

retrieving exhibitionPoints from the system

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

Responses

Code Description

200 exhibitionPoints to be returned

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create new exhibitionPoint

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 53

Responses

Code Description

200 created exhibitionPoint

400

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}

GET
Summary:

get exhibitionPoint by Id

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

Responses

Code Description

200 exhibitionPoint to be returned

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update exhibitionPoint

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

Responses

Code Description

200 updated exhibitionPoint

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 54

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete exhibitionPoint

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

Responses

Code Description

200 information about success or fail of the call

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/content

POST
Summary:

create new content for the exhibitionPoint

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 55

GET
Summary:

get content of the exhibitionPoint

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

Responses

Code Description

200 returned content file

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/media

POST
Summary:

create new media for the exhibitionPoint

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-
points/{exhibitionPointId}/media/{mediaId}

GET
Summary:

get media of the exhibitionPoint by Id

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 56

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

 No mediaIdParam

Responses

Code Description

200 returned media file

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete media of the exhibitionPoint by Id

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

 No mediaIdParam

Responses

Code Description

200 succes or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-
points/{exhibitionPointId}/media/{mediaId}/thumbnail

GET
Summary:

get thumbnail of the media of the exhibitionPoint by Id

Parameters

Name Located in Description Required Schema

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 57

 No exhibitionIdParam

 No exhibitionPointIdParam

 No mediaIdParam

Responses

Code Description

200 returned thumbnail of the media file

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-
points/{exhibitionPointId}/media/{mediaId}/original

GET
Summary:

get original sized image media file

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

 No mediaIdParam

Responses

Code Description

200 returned original media file

Security

Security Schema Scopes

OAuth2 read write

/exhibitions/{exhibitionId}/exhibition-
points/{exhibitionPointId}/media/{mediaId}/facebook

GET
Summary:

get optimized size of image media file for the facebook

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 58

Parameters

Name Located in Description Required Schema

 No exhibitionIdParam

 No exhibitionPointIdParam

 No mediaIdParam

Responses

Code Description

200 returned resized media file

Security

Security Schema Scopes

OAuth2 read write

/hinting/tags

GET
Summary:

hinting service for tags

Parameters

Name Located in Description Required Schema

 No qParam

Responses

Code Description

200 applications to be returned

Security

Security Schema Scopes

OAuth2 read write

/hinting/places

GET
Summary:

hinting service for places - provided by google maps API

Parameters

Name Located in Description Required Schema

 No qParam

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 59

Responses

Code Description

200 applications to be returned

Security

Security Schema Scopes

OAuth2 read write

/hinting/places/{placeId}

GET
Summary:

retrieve information for specific place - provided by google maps API

Parameters

Name Located in Description Required Schema

 No placeIdParam

Responses

Code Description

200 applications to be returned

Security

Security Schema Scopes

OAuth2 read write

/hinting/title

GET
Summary:

hinting service for title

Parameters

Name Located in Description Required Schema

 No qParam

Responses

Code Description

200 applications to be returned

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 60

/hinting/user

GET
Summary:

hinting service to find specific user

Parameters

Name Located in Description Required Schema

 No qParam

Responses

Code Description

200 users to be returned

Security

Security Schema Scopes

OAuth2 read write

/search

GET
Summary:

full-text and geo location search with external repository search integration

Parameters

Name Located in Description Required Schema

 No qParam

 No tagsParam

 No lngParam

 No latParam

 No repositoryParam

 No pageParam

 No limitParam

 No sortParam

Responses

Code Description

200 applications to be returned

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 61

Security

Security Schema Scopes

OAuth2 read write

/users

GET
Summary:

retrieving users from the system

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 users to be returned

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}

GET
Summary:

get user by Id

Parameters

Name Located in Description Required Schema

 No userIdParam

Responses

Code Description

200 user to be returned

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update user

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 62

Parameters

Name Located in Description Required Schema

 No userIdParam

Responses

Code Description

200 updated user

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete user

Parameters

Name Located in Description Required Schema

 No userIdParam

Responses

Code Description

200 information about success or fail of the call

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/media

POST
Summary:

create new media for the user

Parameters

Name Located in Description Required Schema

 No userIdParam

Responses

Code Description

200 success or fail of the operation

Security

Security Schema Scopes

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 63

OAuth2 read write

/users/{userId}/media/{mediaId}

GET
Summary:

get media of the user by Id

Parameters

Name Located in Description Required Schema

 No userIdParam

 No mediaIdParam

Responses

Code Description

200 returned media file

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete media of the user by Id

Parameters

Name Located in Description Required Schema

 No userIdParam

 No mediaIdParam

Responses

Code Description

200 succes or fail of the operation

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 64

/users/{userId}/media/{mediaId}/thumbnail

GET
Summary:

get thumbnail of the media of the user by Id

Parameters

Name Located in Description Required Schema

 No userIdParam

 No mediaIdParam

Responses

Code Description

200 returned thumbnail of the media file

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/folders

GET
Summary:

get user all user’s folders

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 user’s folders

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create new user’s folder

Parameters

Name Located in Description Required Schema

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 65

Responses

Code Description

200 created folder returned

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/folders/{folderId}

GET
Summary:

get specific folder

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 requested folder

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update specific folder

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete specific folder

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 66

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/folders/{folderId}/add/{contentId}

PUT
Summary:

add content to specific folder

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/folders/{folderId}/remove/{contentId}

PUT
Summary:

remove specific content from the folder

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 67

/users/{userId}/following

GET
Summary:

get all users that userId following

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 retrieved users

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/followers

GET
Summary:

get all user’s followers

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 retrieved users

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/follow/{userIdToFollow}

PUT
Summary:

follow specific user

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 succesfully processed operation

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 68

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/unfollow/{userIdToUnfollow}

PUT
Summary:

unfollow specific user

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/notifications

GET
Summary:

Retrieve all user’s notifications. Visit user guidelines for more information about
using WebSocket for receiving real time notifications

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 retrieved notifications

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/notifications/{notificationId}/unread

PUT
Summary:

mark specific notification as unread

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 69

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/notifications/{notificationId}/read

PUT
Summary:

mark specific notification as read

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

/users/{userId}/notifications/{notificationId}/allread

PUT
Summary:

mark all user’s notification as read

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successfully processed operation

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 70

/teams

GET
Summary:

retrieving teams from the system

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 teams to be returned

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create new team

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 created team

Security

Security Schema Scopes

OAuth2 read write

/teams/{teamId}

GET
Summary:

retrieving specific team

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 requested team returned

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 71

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update specific team

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 successful update

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete specific team

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 team successfully deleted

Security

Security Schema Scopes

OAuth2 read write

/events

GET
Summary:

retrieving events from the system

Parameters

Name Located in Description Required Schema

Responses

Code Description

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 72

200 events to be returned

Security

Security Schema Scopes

OAuth2 read write

POST
Summary:

create new event

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 created event

Security

Security Schema Scopes

OAuth2 read write

/events/{eventId}

GET
Summary:

retrieving specific event

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 requested event returned

Security

Security Schema Scopes

OAuth2 read write

PUT
Summary:

update specific event

Parameters

Name Located in Description Required Schema

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 73

Responses

Code Description

200 successful update

Security

Security Schema Scopes

OAuth2 read write

DELETE
Summary:

delete specific event

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 event successfully deleted

Security

Security Schema Scopes

OAuth2 read write

/licenses/filter

GET
Summary:

find appropriate license that match users criteria

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 list of licenses

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 74

/licenses/resolve

GET
Summary:

find appropriate licenses for the derivative work which is compound of content with
different licesnses

Parameters

Name Located in Description Required Schema

Responses

Code Description

200 list of licenses

Security

Security Schema Scopes

OAuth2 read write

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 75

Annex: Style Guidelines for Plugins

The aim of this visual guide is to summarise the design characteristics of the PLUGGY
Social Platform. It is directed to developers that want to use the PLUGGY Social Platform
design in their plugin applications. This includes a recommended Colour Palette, a set of
Icons, a Font and other basic visual elements, described below.

The PLUGGY Social Platform uses a Colour Palette. The main colour is a dark blue,
complemented by a selection of greys. These colours are defined in the styles.css file of
the project, under the names like “--pluggyDarkBlue”.

The following are the icons used throughout the Pluggy Social Platform.

A
SS

ET
S

Image

camera_alt (Material Icons)

Soundfile

audiotrack (Material Icons)

3D object

3d_rotation (Material Icons)

Video

videocam (Material Icons)

#20688d

r32 g104 b141

--
pluggyDarkBlu

e

#50555c

r80 g85 b92

--pluggyDarkGrey

#77808a

r119 g128 b138

--pluggyMediumGrey

#9faab8

r159 g170 b184

--pluggyLightGrey

#d9dce3

r217 g220 b227

--pluggyDisabledGrey

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 76

EX
H

IB
IT

IO
N

S

Blog Story

developer_board (Material Icons)

Soundscape

SVG file

AR/VR SVG file

Game

games (Material Icons)

Timeline

SVG file

Tour

room (Material Icons)

M
EN

U

Home

SVG file

Exhibitions

SVG file

Assets

SVG file

Folders

SVG file

Notifications

notifications_none (Material Icons)

Search

search (Material Icons)

SO
C

IA
L

IN
TE

R
A

C
TI

O
N

Like

favorite (Material Icons)

Comment

comment (Material Icons)

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 77

Been Here

beenhere (Material Icons)

Report

warning (Material Icons)

Share

share (Material Icons)

Bookmark

bookmark_border (Material Icons)

The Font used by the Pluggy Social Platform is the Google Font Roboto.
(https://fonts.google.com/specimen/Roboto)

The user interface of the Pluggy Social Platform is built using the Bootstrap library
(https://getbootstrap.com/). The components have been modified to suit the colour
scheme of the project.

Bootstrap button classes are extended through CSS classes to have the following button
states:

Normal state (two type of buttons) Hover state Disabled State

A text selector was created through CSS classes, and it has the following states:

Selected State Normal State Hover State Disabled State

A filter-badge CSS class was designed for the filters in the search page. It has the following
states:

https://fonts.google.com/specimen/Roboto
https://getbootstrap.com/

D4.5 – Guidelines & Instructions for PLUGGY apps Dissemination Level: PU

PLUGGY / GA# 726765 Plug into Cultural Heritage 78

Selected State Normal State Disabled State Hover State

	TABLE OF CONTENTS
	EXECUTIVE SUMMARY
	1 Introduction
	1.1 Who is this document for?
	1.2 What can I develop with PLUGGY?
	1.3 Where can I find more resources?
	1.3.1 Online resources
	1.3.2 Relation with other PLUGGY Deliverables

	2 The PLUGGY API
	2.1 The PLUGGY Architecture
	2.2 The PLUGGY Datamodel
	2.2.1 Content
	2.2.2 Users and Social Interaction

	2.3 Using the API Step by Step
	2.3.1 Becoming a developer
	2.3.2 Specifying Basic Information
	2.3.3 Specifying your Application Type
	2.3.1 Specifying Content Type and Reuse Policy.
	2.3.2 Security
	2.3.3 Making your Application Available to PLUGGY Users

	3 Example Use Cases of the PLUGGY API
	3.1 Basics
	3.1.1 Searching
	3.1.2 Creating Content
	3.1.3 Managing Notifications

	3.2 Examples
	3.2.1 asset-plugin-collage
	3.2.2 exhibition-plugin-gallery-creator
	3.2.3 exhibition-plugin-gallery-viewer
	3.2.4 pluggy-example-browser
	3.2.5 websocket

	4 Conclusions
	Annex: API Documentation
	Minimal Required Data Models
	Asset
	Exhibition
	Exhibition Point

	Endpoints and methods.
	/applications
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Responses
	Security

	/applications/{applicationId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/application/{applicationId}/status
	PUT
	Summary:
	Responses
	Security

	/application/{applicationId}/users
	PUT
	Summary:
	Responses
	Security

	/application/{applicationId}/users/{userId}/role
	PUT
	Summary:
	Responses
	Security

	/assets
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Responses
	Security

	/assets/import
	POST
	Summary:
	Responses
	Security

	/assets/{assetId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/cover
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/media
	POST
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/media/{mediaId}
	GET
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/media/{mediaId}/thumbnail
	GET
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/media/{mediaId}/original
	GET
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/media/{mediaId}/facebook
	GET
	Summary:
	Parameters
	Responses
	Security

	/assets/my
	GET
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/like
	POST
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/unlike
	POST
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/comment
	POST
	Summary:
	Parameters
	Responses
	Security

	/assets/{assetId}/report
	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Responses
	Security

	/exhibitions/{exhibitionId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/cover
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/media
	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/media/{mediaId}
	GET
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/media/{mediaId}/thumbnail
	GET
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/media/{mediaId}/original
	GET
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/media/{mediaId}/facebook
	GET
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/my
	GET
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/like
	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/unlike
	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/comment
	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/report
	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/content
	POST
	Summary:
	Parameters
	Responses
	Security

	GET
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/media
	POST
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/media/{mediaId}
	GET
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/media/{mediaId}/thumbnail
	GET
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/media/{mediaId}/original
	GET
	Summary:
	Parameters
	Responses
	Security

	/exhibitions/{exhibitionId}/exhibition-points/{exhibitionPointId}/media/{mediaId}/facebook
	GET
	Summary:
	Parameters
	Responses
	Security

	/hinting/tags
	GET
	Summary:
	Parameters
	Responses
	Security

	/hinting/places
	GET
	Summary:
	Parameters
	Responses
	Security

	/hinting/places/{placeId}
	GET
	Summary:
	Parameters
	Responses
	Security

	/hinting/title
	GET
	Summary:
	Parameters
	Responses
	Security

	/hinting/user
	GET
	Summary:
	Parameters
	Responses
	Security

	/search
	GET
	Summary:
	Parameters
	Responses
	Security

	/users
	GET
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/media
	POST
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/media/{mediaId}
	GET
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/media/{mediaId}/thumbnail
	GET
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/folders
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/folders/{folderId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/folders/{folderId}/add/{contentId}
	PUT
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/folders/{folderId}/remove/{contentId}
	PUT
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/following
	GET
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/followers
	GET
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/follow/{userIdToFollow}
	PUT
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/unfollow/{userIdToUnfollow}
	PUT
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/notifications
	GET
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/notifications/{notificationId}/unread
	PUT
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/notifications/{notificationId}/read
	PUT
	Summary:
	Parameters
	Responses
	Security

	/users/{userId}/notifications/{notificationId}/allread
	PUT
	Summary:
	Parameters
	Responses
	Security

	/teams
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Parameters
	Responses
	Security

	/teams/{teamId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/events
	GET
	Summary:
	Parameters
	Responses
	Security

	POST
	Summary:
	Parameters
	Responses
	Security

	/events/{eventId}
	GET
	Summary:
	Parameters
	Responses
	Security

	PUT
	Summary:
	Parameters
	Responses
	Security

	DELETE
	Summary:
	Parameters
	Responses
	Security

	/licenses/filter
	GET
	Summary:
	Parameters
	Responses
	Security

	/licenses/resolve
	GET
	Summary:
	Parameters
	Responses
	Security

	Annex: Style Guidelines for Plugins

